查字典论文网 >> 浅析工厂供电系统无功补偿问题

浅析工厂供电系统无功补偿问题

小编:

摘要:衡量企业经营效益中一项指标是其功率因数的高低,所以,工厂要想其自然功率因数有所提高,还应当利用无功补偿的方法来解决问题,以提高有功输出能力和输电能力,降低电能损耗和功率损耗,从而实现节约电能的最终目的。本文主要对工厂供电系统无功补偿问题进行了分析研究。

关键词:工厂供电系统;无功补偿;方式选择;注意问题

中图分类号:TU74 文献标识码: A

引言

将具有感性功率和具有容性功率负荷的装置连接在一个电路中,如果容性负荷释放能量时,感性负荷就会吸收能量;反之,如果感性负荷释放能量时,容性负荷就会吸收能量,能量会在感性负荷和容性负荷之间交换,通过能量在两种负荷的交换,容性负荷输出的无功功率就可以补偿感性负荷吸收的无功功率。因此,应当采取有效的办法,提高工厂供电系统功率因数,降低电能损耗和功率损耗,以实现提高供电质量且节约电能的目的,而无功补偿就是提高其功率因数的理想途径。

一、无功补偿的原则与类型

对于很多发电机来说,无功功率的供给都是有限的,一般无法充分满足电力负荷的需求。因此,需要在电网系统中设置必要的无功补偿装置,从而解决无功功率不足的问题,使用电设备能够正常地在额定电压下运转,这就是无功补偿在供电系统中的运行原理。

1、无功补偿的原则

在利用无功补偿时,需要遵循以下几个方面的原则:一是要进行电网的全面规划,使电网布局更加合理,并利用分级补偿的办法来实施无功补偿;二是在利用分散补偿时,还需要结合集中补偿的方法,但要以分散补偿为主要方法;三是要将高压补偿和低压补偿相结合,并且要将低压补偿作为一种主要的补偿原则;四是要充分发挥降损和调压的作用,并且要将降损作为主要的控制手段。

2、无功补偿的类型

2.1固定投切这种方式在功率过低的情况下,会产生补偿不足的问题,并且功率因数通常偏低。但如果功率过高,就会出现补偿过量的情况,功率因素也会相应增高,从而形成电网中的电流倒供的问题。

2.2延时投切这种方式也被人们称为一种静态补偿方式,利用接触器来实现投切,专用的接触器会通过一系列的动作抑制电容涌流,这种方式能够有效避免接触器的动作可能对电容器造成的损害,同时也可以避免防备电容在投切过程中产生的系统振荡问题。

2.3瞬时投切这种方式也被称为一种动态补偿的方法,在利用半导体电力器件作用的同时,还充分利用了数字技术,通过脉冲信号来完成导通过程,实现了传统的接触器无法完成的控制过程。

2.4混合投切这种方式是将多种补偿方式相结合,可以充分发挥各种补偿方式的优势,并且也拓宽了投切的应用范围,能够起到更好的补偿效果。

二、无功补偿方式的选择

1、低压集中补偿

这种方式是把低压电容器组集中装设在车间变电所低压380V母线上,实际补偿容量随自然功率因数的变化而调整,能补偿低压母线前的高压电网、地区电网和整个电力系统的无功功率,并且能使变压器的视在功率减小,从而变压器容量可选得小一些,比较经济,由于安装在变电所低压配电室内,运行维护比较方便。对于工厂存在的谐波源,车间变压器也起到了隔离和衰减谐波的作用,有利于低压移相电容器的安全稳定运行。

2、高压集中补偿

这种方式是把高压电容器组集中装设在工厂变配电所的6-10kV母线上,所以只能补偿高压一次侧的无功功率,而二次侧的线路并没有得到无功补偿,因而其经济效益相对较较差。但由于用户6~10kV母线上无功功率变化比较平稳,因而便于运行管理和调节,而且利用率相对较高,还可以提高供电变压器的负荷能力。从整体上看可以改善地区电网,甚至区域电网的功率因数,所以至今仍是城市及大中型工矿企业的主要无功补偿方式。

3、单独就地补偿

单独就地补偿,也叫做分散就地补偿,是把并联电容器组分别装设在各组用电设备或单独的大容量设备旁边。这种补偿方式能够补偿安装部位以前的所有高低压线路和电力变压器的无功功率,其补偿效果较好,补偿范围大,因此可以优先考虑。但此方式设备投资较大,且电容器在被补偿的用电设备停止工作时也被一并切除,所以设备利用率相对较低,同时增加了管理上的不便。单独就地补偿适用于个别容量较大且位置单独的负荷,比如大容量的感应电动机。特别适用于负荷平稳,长期运转的设备,还适用于容量虽小但数量多且长期稳定运行的设备,比如荧光灯等。当装有就地补偿电容器的单台异步电动机突然断电时,电容器就会对电动机放电,从而产生自励磁现象;若补偿容量过大,又可能因电动机惯性转动而产生过电压,导致电动机损坏。所以,要求电容器(组)的放电电流不得大于电动机空载电流,即

式中,UN为供电系统额定线电压(V);I0为电动机额定空载电流(A)。

三、无功补偿应注意的问题

1、谐波的有效抑制

2、并联电容器接线方式

并联电容器分两大类,三角形及星形,前者又分单三角形、及双三角形,后者分单星形及双星形。同样三个单相电容器,采用三角形接线的容量为星形接线的容量的3倍,因此以往工厂中以三角形接法最为普遍。但另一方面,高压电容器三角形接法具有一定的安全隐患,因此国家规定新(扩)建高压电容器组不再采用三角形接线,对于有些低压三相并联电容器内部已接成三角形属正常接线方式。

3、无功倒送问题

无功倒送势必造成配电网损耗的增加,加重输电线路的负担,对工厂采用固定电容器补偿的用户,负荷在低谷时往往产生无功倒送问题,对此可采用电容自动补偿装置或部分投入电容器。

4、运行维护问题

若供电系统电压过低或功率因数过低时,则应投入并联电容器,值班员应在并联电容器组正常运行中对电压、电流及室温等进行定期检视其,并检查其外部是否有外壳膨胀及漏喷油等现象,有无放电声响或放电痕迹,接头是否存在发热现象,放电设备是否完好,指示灯是否指示正常等。若发现异常情况,则必须立即切除电容器。同时,在切除电容器前要从仪表指示或灯光等外观方面检查放电回路是否完好。切除电容器后要立即通过放电回路充分放电。

四、无功补偿的未来发展前景

结束语

在工厂供电系统中,利用无功补偿的办法可以提高功率因数,从而提高工厂的经济效益,也能够提高电能的利用效率,减少功率损耗和电能损耗。此外,还能够提高电力系统的供电质量,起到节能环保的效果,对于整个电网系统的运行都有着良好的促进作用。

热点推荐

上一篇:试析目前电力调度运行中存在的问题及优化措施

下一篇:如何对幼儿进行德育教育论文 幼儿园关于德育教育之类的论文