2023年人教七年级数学教案全册(汇总18篇)
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。
人教七年级数学教案全册篇一
本环节主要是创设情境,在实际问题中引出本节课题.
【设计意图】。
引导学生发现:可以借助游戏创设情境,导入新课.
(二)探究新知。
1、利用丹凤地图的实际情境探索点的平移与坐标变化的规律.
2、如图,已知a(c2,c3),根据下列条件,在相应的坐标系中分别画出平移后的点,写出它们的坐标,并观察平移前后点的坐标变化.
(1)将点a向右平移5个单位长度,得到点a1;
(2)将点a向左平移2个单位长度,得到点a2;
(3)将点a向上平移6个单位长度,得到点a3;
(4)将点a向下平移4个单位长度,得到点a4;
教学过程中注重让学生明确:将哪个点沿着什么方向,平移几个单位后,得到的是哪个点.
3、在此基础上可以归纳出:点的左右平移点的横坐标变化,纵坐标不变。
点的上下平移点的横坐标不变,纵坐标变化。
4、点的平移的应用.(见课件)。
5、比一比看谁反应快。
(1)点a(c4,2)先向右平移3个单位长度后得到点b,求点b的坐标.
(2)点a(c4,2)先向左平移2个单位长度后得到点b,求点b的坐标.
(3)点a(c4,2)先向下平移4个单位长度后得到点b,求点b的坐标.
(4)点a(c4,2)先向上平移3个单位长度后得到点b,求点b的坐标.
6、逆向思维:由点的变化探索点的方向和距离。
(1)如果a,b的坐标分别为a(-4,5),b(-4,2),将点a向___平移___个单位长度得到点b;将点b向___平移___个单位长度得到点a。
(2)如果p、q的坐标分别为p(-3,-5),q(2,-5),将点p向___平移___个单位长度得到点q;将点q向___平移___个单位长度得到点p。
(3)点a′(6,3)是由点a(-2,3)经过__________________得到的.点b(4,3)向______________得到b′(4,5)。
7、应用平移解决简单问题在平面直角坐标系中,有一点(1,3),要使它平移到点(-2,-2),应怎样平移?说出平移的路线。
人教七年级数学教案全册篇二
1、生物圈中的绿色植物类群有:藻类植物、苔藓植物、蕨类植物、种子植物,其中前三种植物生长到一定的时期会产生一种叫做孢子的生殖细胞。因为通过孢子进行繁殖,所以又称为孢子植物(没有种子植物)。
2、藻类植物大多数生活在水中(如淡水:水绵,衣藻海水:紫菜、海带)。
(1)形态结构:没有根、茎、叶的分化。
(2)营养方式:藻类植物细胞里都含有叶绿素能进行光合作用,营养方式为自养。
(3)繁殖方式:用孢子进行繁殖。
3、藻类植物在生物圈中作用:
(1)生物圈中氧气的重要来源。
(2)水生生物的食物来源。(如鱼类饵料)。
(3)供食用。(如海带紫菜)。
(4)药用。
4、苔藓植物大多数生活在陆地上的潮湿环境(葫芦藓、地钱、树干苔藓)。
(1)形态结构:一般都很矮小,通常具有类似茎和叶的分化,但是茎中没有导管,叶中也没有叶脉,根非常简单,称为假根(只起固定植物体作用)。
(2)营养方式:苔藓植物细胞里都含有叶绿素,能进行光合作用。
(3)繁殖方式:用孢子(生殖细胞)进行繁殖。苔藓植物是监测空气污染程度的指示植物。
5、蕨类植物多数生活在阴湿的环境中(如里白、贯众、满江红)。
(1)形态结构:有根、茎、叶的分化,在这些器官中有专门运输物质的通道——输导组织。
(2)营养方式:蕨类植物细胞里都含有叶绿素能进行光合作用,营养方式为自养。
(3)繁殖方式:用孢子(生殖细胞)进行繁殖。
蕨类植物与人类的关系及其在生物圈中的作用:
(1)可供食用,如蕨菜。
(2)可供药用,如卷柏、贯众等。
(3)作为绿肥和饲料,如满江红。
(4)煤的来源。
6、种子植物的分类:根据子叶数目分为:
(1)双子叶植物:胚里具有两片子叶的植物(叶脉网状),营养都储存在子叶中。如蚕豆、大豆、花生。
(2)单子叶植物:胚里具有一片子叶的植物(叶脉弧形),营养大部分储存在胚乳中。如水稻、小麦、高粱。
7、种子的结构:
(1)种皮:保护作用。
(2)胚(包含胚芽、胚轴、胚根、子叶)是新植物的幼体,将来能发育成一个植物体。
(3)只有单子叶植物有胚乳。子叶、胚乳中储藏的营养物质是胚发育成幼苗时养料的来源。
8、种子和孢子的比较:种子中含有丰富的营养物质,具有适应环境的结构特点,如果环境过于干燥或寒冷,它可以处于休眠状态。孢子只是一个细胞,只有散落在温暖潮湿的环境中才能萌发。
10、被子植物成为地球上分布最广泛的植物原因:被子植物一般都具有非常发达的输导组织,从而保证了体内水分和营养物质高效率地运输;它们一般都能开花和结果,所结的果实能够保护里面的种子,不少果实还能帮助种子传播。
生物实验题解题技巧。
深刻领会生物教材实验的设计思想。做好探究性实验大题,就要认真分析教材涉及的实验,理解每一个实验的原理与目的要求,弄清材料用具的选择方法与原则。
掌握生物实验方法和实验步骤,深入分析实验条件、过程、现象或结果的科学性、正确性、严谨性和可变性,能够描述教材中经典实验的原理、目的、方法步骤、现象与结果预测及结论,为实验设计提供科学的实验依据,搭建基本框架。
生物的学习方法和技巧。
掌握基本知识要点。
与学习其它理科一样,生物学的知识也要在理解的基础上进行记忆,但是初中阶段的生物学还有着与其它学科不一样的特点:面对生物学,同学们要思考的对象是陌生的细胞、组织、各种有机物、无机物以及他们之间奇特的逻辑关系。
因此只有在记住了这些名词、术语之后才有可能理解生物学的逻辑规律,既所谓“先记忆,后理解”。在记住了基本的名词、术语和概念之后,把主要精力放在学习生物学规律上。这时要着重理解生物体各种结构、群体之间的联系(因为生物个体或群体都是内部相互联系,相互统一的整体),也就是注意知识体系中纵向和横向两个方面的线索。
用生物学的基本观点统领生物学的学习。
树立正确的生物学观点,可以更迅速更准确地学习生物学知识。所以在生物学学习中,要注意树立以下生物学观点:
1.生命物质性观点生物体由物质组成,一切生命活动都有其物质基础。
2.结构与功能相统一的观点包括两层意思:一是有一定的结构就必然有与之相对应功能的存在;二是任何功能都需要一定的结构来完成。
3.生物的整体性观点系统论有一个重要的思想,就是整体大于各部分之和,这一思想完全适合生物领域。不论是细胞水平、组织水平、器官水平,还是个体水平,甚至包括种群水平和群落水平,都体现出整体性的特点。
4.生命活动对立统一的观点生物的诸多生命活动之间,都有一定的关系,有的甚至具有对立统一的关系,例如,植物的光合作用和呼吸作用就是对立统一的一对生命活动。
5.生物进化的观点生物界有一个产生和发展的过程,所谓产生就是生命的起源,所谓发展就是生物的进化。生物的进化遵循从简单到复杂,从水生到陆生、从低等到高等的规律。
6.生态学观点基本内容是生物与环境之间是相互影响、相互作用的,也是相互依赖、相互制约的。生物与环境是一个不可分割的统一整体。
系统化和具体化的方法。
系统化就是把各种有关知识纳入一定顺序或体系的思维方法。系统化不单纯是知识的分门别类,而且是把知识加以系统整理,使其构成一个比较完整的体系。在生物学学习过程中,经常采用编写提纲、列出表解、绘制图表等方式,把学过的知识加以系统地整理。
具体化是把理论知识用于具体、个别场合的思维方法。在生物学学习中,适用具体化的方式有两种:一是用所学知识应用于生活和生产实践,分析和解释一些生命现象;二是用一些生活中的具体事例来说明生物学理论知识。
人教七年级数学教案全册篇三
1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2.掌握点到直线的距离的概念,并会度量点到直线的距离。
3.掌握垂线的性质,并会利用所学知识进行简单的推理。
[教学重点与难点]。
1.教学重点:垂线的定义及性质。
2.教学难点:垂线的画法。
[教学过程设计]。
一、复习提问:
1、叙述邻补角及对顶角的定义。
2、对顶角有怎样的.性质。
二.新课:
引言:
前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。
(一)垂线的定义。
当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
如图,直线ab、cd互相垂直,记作,垂足为o。
请同学举出日常生活中,两条直线互相垂直的实例。
注意:
1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。
2、掌握如下的推理过程:(如上图)。
反之,
(二)垂线的画法。
探究:
1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?
2、经过直线l上一点a画l的垂线,这样的垂线能画出几条?
3、经过直线l外一点b画l的垂线,这样的垂线能画出几条?
画法:
让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。
注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。
(三)垂线的性质。
经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
性质1过一点有且只有一条直线与已知直线垂直。
练习:教材第7页。
探究:
如图,连接直线l外一点p与直线l上各点o,
a,b,c,……,其中(我们称po为点p到直线。
l的垂线段)。比较线段po、pa、pb、pc……的长短,这些线段中,哪一条最短?
性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(四)点到直线的距离。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
如上图,po的长度叫做点p到直线l的距离。
人教七年级数学教案全册篇四
1、《在山的那边》,作者王家新。
2、《走一步,再走一步》作者莫顿?亨特,美国作家。
3、《紫藤萝瀑布》选自《铁箫人语》,作者宗璞。
4、《童趣》节选自《浮生六记?闲情记趣》,作者沈复,字三白,清代文学家。
5、流沙河,原名余勋坦,四川金堂人,现代诗人。
6、玛丽?居里,波兰人,后加入法国国籍,的物理学家、化学家。1903年,她与居里、贝可勒尔共获诺贝尔物理奖,1911年获诺贝尔化学奖。
7、孔子(前551-前479),名丘,字仲尼,春秋鲁国(山东曲阜)人。我国古代伟大的思想家、教育家。《论语》是记录孔子和他的x行的一部书,共20篇,是儒家经典著作之一。
8、《春》选自《朱自清全集》,作者朱自清,原名自华,字佩弦。散文家、诗人、学者、民主战士。有诗文集《踪迹》,散文集《背影》《欧游杂记》。
9、《济南的冬天》,选自《老舍文集》,作者老舍,原名舒庆春,字舍予,作家。
10、《夏感》作者梁衡。
11、《秋天》作者何其芳,现代诗人、评论家。
12、《观沧海》选自《乐府诗集》,曹操,字孟德,东汉末年政治家、军事家、诗人。他的诗以慷慨悲壮见称。
13、《次北固山下》选自《全唐诗》,作者王湾,唐代诗人。
14、《钱塘湖春行》选自《白氏长庆集》,作者白居易,字乐天,晚年又叫香山居士,唐代大诗人。
15、《天净沙秋思》选自《全元散曲》,作者马致远,元朝戏曲作家。
16、法布尔,法国昆虫学家,著有《昆虫记》这部昆虫学巨著。
17、蒲松龄,字留仙,世称'聊斋先生',号柳泉居士,清代文学家。《聊斋志异》是一部文言短篇小说集。
18、《风筝》作者鲁迅,原名周树人,字豫才,浙江绍兴人。我国伟大的文学家、思想家、革命家。著作有小说集《呐喊》、《彷徨》;散文集《朝花夕拾》;散文诗集《野草》;杂文集《坟》、《华盖集》、《二心集》等。
19、《羚羊木雕》作者张之路。
20、《散步》作者莫怀戚。
21、《金色花》作者泰戈尔,印度文学家。著作有诗集《新月集》、《飞鸟集》,长篇小说《沙子》、《沉船》等。1913年获得诺贝尔文学奖。
22、《荷叶》作者冰心,原名谢婉莹,福建长乐人,诗人、作家,代表作有《繁星》、《春水》、《寄小读者》等。
23、安徒生,丹麦童话作家,主要作品有《卖火柴的小女孩》、《海的女儿》、《丑小鸭》等。
语文学习方法。
1、运用想象和联想。想象和联想伴随着语文学习的始终,听说读写都离不开想象和联想。比如:再看课文《春》的过程中可以联想到以前学过的描写春的古诗词,再现课文的内容和情景。在阅读过程中,有意识的把语言文字的内容与自己的生活经历和感悟结合起来。这样的锻炼会大大提高学生的阅读能力、和理解能力。如果把它运用到写作中,会有效地提高学生的写作水平。
2、积极主动的参与课堂活动。在课堂上老师对课文的理解是老师的理解,融入了老师的知识积累和生活经验,而同学们也许会有自己的理解,是站在一个未成年人的角度来理解课文,也许学生的理解会更好,所以学生要敢于在课堂上发表自己的见解。这些课堂活动可以激发学生的思维,锻炼他们都种能力。所以,同学们应该多思考,多提问,多研讨,使课堂活动丰富多样,精彩纷呈。
3、养成自控式的良好学习习惯。语文学习尤其要养成良好的学习习惯:字要规规矩矩的写,课文要仔仔细细的读,练习要踏踏实实的做,作文要认认真真的完成;要用心听讲、作业书写规范、独立完成作业、主动制定学习计划、多读、多背、多思考、经常练笔、看报等。这些都会帮助我们在不知不觉中提高语文水平。
语文学习方法有哪些。
1.把握课堂。
上课一定要认真听,因为你的语文老师会在课上讲什么重点,易错点,写作技巧等等,这些很重要。可以准备一个积累本,平时不认识的字,不熟悉的成语,文学常识都可以写上去。不懂一定要问老师,千万不要害羞,但如果你真的觉得不好意思,可以问你身边的学霸同学。
2.阅读理解学习方法。
阅读理解,这主要培养学生的阅读速度和思维记忆能力,所以在生活中你要大量读书,读好书,一些网络上的言情之类的小说就算了吧,那个看看电视剧就好了,读完一本书可以做读书笔记,读后感等等,也可以磨练你的作文,这是第一点,多读书。第二点,其实阅读理解的题都是有套路的,要不你就多做题自己总结,要不你就在网上搜,请教老师,都可以,但不要完全按照套路,不要那么死板。
3.作文写作技巧。
作文,你可以买一本中考作文,把里面的好词好句抄在本子上背下来,学习人家的写作结构,还有就是尽量一周写几篇作文,找老师或者其他人修改,锻炼写作能力,不要怕不知道写什么,你就在生活中细细观察,就比如你的家人都是怎样刷牙的,只要你细心观察,总会有可写的,你也可以记录一天中都干了什么,尽量写成一个小标题,然后你自己再扩充,为你以后写作文准备素材。
人教七年级数学教案全册篇五
一。教学目标:
1、认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2、能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3、情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二。教学重难点。
重点:二元一次方程组及其解的概念。
难点:用列表尝试的方法求出方程组的解。
三。教学过程。
(一)创设情景,引入课题。
1、本班共有40人,请问能确定男_几人吗?为什么?
(1)如果设本班男生x人,_人,用方程如何表示?(x+y=40)。
(2)这是什么方程?根据什么?
2、男生比_了2人。设男生x人,_人。方程如何表示?x,y的值是多少?
3、本班男生比_2人且男_40人。设该班男生x人,_人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4、点明课题:二元一次方程组。
[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]。
(二)探究新知,练习巩固。
1、二元一次方程组的概念。
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]。
(2)练习:判断下列是不是二元一次方程组:。
x+y=3,x+y=200,。
2x-3=7,3x+4y=3。
y+z=5,x=y+10,。
2y+1=5,4x-y2=2。
学生作出判断并要说明理由。
2、二元一次方程组的解的概念。
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=。
y=0;y=2;y=1;y=。
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2。
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0.55x+2a=2y。
(三)合作探索,尝试求解。
现在我们一起来探索如何寻找方程组的解呢?
1、已知两个整数x,y,试找出方程组3x+y=8的解。
2x+3y=10。
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。
2、据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
(四)课堂小结,布置作业。
1、这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)。
2、你还有什么问题或想法需要和大家交流?
3、作业本。
教学设计说明:
1、本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2、“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3、本课在设计时对教材也进行了适当改动。例题方面考虑到数_代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
人教七年级数学教案全册篇六
1.单项式:只含有数和字母的乘积的代数式叫做单项式.单独的一个数或一个字母也是单项式.它的本质特征在于:
(1)不含加减运算;。
(2)可以含乘、除、乘方运算,但分母中不能含有字母.
2.单项式的次数、系数:一个单项式中,所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.
3.多项式:几个单项式的和叫做多项式.多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数.
4.整式:单项和多项式统称整式.
人教七年级数学教案全册篇七
1.理解加减消元法.
2.用加减消元法解二元一次方程组.
【过程与方法】。
由具体的简单的用加减消元法解二元一次方程组的例子,体验加减消元法,在此基础上学习加减消元法的概念,再运用加减消元法解方程组,最后使同学们认识到解二元一次方程组时,要先观察,再选择合适的方法解二元一次方程组.
【情感态度】。
体验先观察,再选择合适的方法是做数学题的重要技巧,也是今后解决工作、科学问题的重要技巧.
【教学重点】。
加减消元法.
【教学难点】。
选择合适的方法解二元一次方程组.
问题3_________法和_________法都是二元一次方程组的两种解法,它们都是通过消元使方程组转化为________方程,只是消元方法不同.解二元一次方程组时,应根据方程组的具体情况选择更________它的解法.
【教学说明】对问题1,可鼓励学生独立作业,但也不反对分组讨论.然后交流成果,引导学生归纳加减消元法.在此基础上可组织学生完成教材p96练习1.
对问题2,这是本节课的重点和难点,要让学生知道本题有两种方法:(1)用加法消元法消去y.(2)用减法消元法消去x.
对问题3,可指导学生在阅读教材p97后填空,然后加以正确理解.
二、思考探究,获取新知。
思考什么叫做加减消元法?
【归纳结论】两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.
人教七年级数学教案全册篇八
(4)设n是一个数,则它的相反数是________.
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
2.请学生说出所列代数式的意义。
(设计意图:让学生会用单项式表示现实生活中的数量关系,进一步感悟用字母表示数的简洁、方便,使用的广泛性。)。
3.请学生观察所列代数式包含哪些运算,有何共同运算特征。
(由小组讨论后,经小组推荐人员回答)。
(设计意图:教师提出问题,激发学生学习的欲望、学习的积极性、主动性,以此为载体感悟单项式的特征,为归纳单项式概念作好准备)。
二、新授内容。
1、单项式。
通过上述特征的描述,从而概括单项式的概念,:
单项式:即由_____与______的乘积组成的代数式称为单项式。
补充:单独_________或___________也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y+x;(6)-xy2;(7)-5。
解:是单项式的有(填序号):________________________。
人教七年级数学教案全册篇九
1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。
2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。
3、养成学生积极主动的学习态度和自主学习的方式。
重点:认识点、线、面、体的几何特征,感受它们之间的关系。
难点:在实际背景中体会点的含义。
圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型。
观察、讨论.让学生共同体会“点动成线、线动成面、面动成体。
让学生举出更多的“点动成线、线动成面、面动成体”的例子。
小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)。
设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。
教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。
让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。
1、课本112页观察,并回答它的问题。
引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。
2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:
让学生自己体会并小组讨论得出点、线、面、体之间的关系。
2、阅读教科书第119页的实验与探究,并思考有关问题。
人教七年级数学教案全册篇十
知识提要:在数学中,用一条直线上的点表示数,这条直线叫做数轴.数轴的三要素为:原点、正方向、单位长度.
1.关于数轴,下列说法最准确的是(d)。
a.一条直线。
b.有原点、正方向的一条直线。
c.有单位长度的一条直线。
d.规定了原点、正方向、单位长度的直线。
人教七年级数学教案全册篇十一
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征。
知识重点相反数的概念。
教学过程(师生活动)设计理念。
设置情境。
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类。
4,-2,-5,+2。
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)。
思考结论:教科书第13页的思考。
再换2个类似的数试一试。
培养学生的观察与归纳能力,渗透数形思想。
深化主题提炼定义给出相反数的定义。
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a。
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义。
给出规律。
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5。
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法。
小结与作业。
课堂小结1,相反数的定义。
2,互为相反数的数在数轴上表示的点的特征。
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1,必做题教科书第18页习题1.2第3题。
2,选做题教师自行安排。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.
2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.
3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.
人教七年级数学教案全册篇十二
为了让学生通过实例了解数轴的概念和数轴的画法,知道如何在数轴上表示有理数。为大家分享了七年级数学数轴的课件教学,欢迎借鉴!
教学目标。
1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点。
数轴的概念和用数轴上的点表示有理数。
知识重点。
教学过程(师生活动)设计理念。
设置情境引入课题。
教师通过实例、课件演示得到温度计读数.。
(多媒体出示3幅图,三个温度分别为零上、零度和零下)。
(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学点表示数的感性认识。
合作交流。
探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
寻找规律。
归纳结论问题3:
1,你能举出一些在现实生活中用直线表示数的实际例子吗?
3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4,每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)。
归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
巩固练习。
教科书第12页练习。
小结与作业。
课堂小结请学生。
总结。
1,数轴的三个要素;
2,数轴的作以及数与点的转化方法。
本课作业。
1,必做题:教科书第18页习题1.2第2题。
2,选做题:教师自行安排。
教学反思:
1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
人教七年级数学教案全册篇十三
一:教材分析:
1:教材所处的地位和作用:
以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
2:教育教学目标:
(1)知识目标:
(a)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。
(b)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。
(3)思想目标:
通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3:重点,难点以及确定的依据:
根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。
二:学情分析:(说学法)。
1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。
2:学生在列方程解应用题时,可能存在三个方面的困难:
(1)抓不准相等关系;
(2)找出相等关系后不会列方程;
(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。
3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。
4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。
5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。
三:教学策略:(说教法)。
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1:“读(看)——议——讲”结合法。
2:图表分析法。
3:教学过程中坚持启发式教学的原则。
教学的理论依据是:
1:必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让学生大致了解列出一元一次方程解应用题的方法。
2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例1中,不能把“设原来有_千克面粉”写成“设原来有_”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“_字串7”“—15%_”“42500”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。
3:针对学生在列方程解应用题中可能存在的三个方面的困难,在教学过程中有意识加以解决,特别是学生抓不准相等关系这方面,可以让学生通过表格,图表等形式帮助学生找出相等关系表示成方程。如例1在分析过程中通过表格让学生明了清楚直观解决列方程的难点。
4:通过图表对比使学生更直观,理解更深刻,同时,降低了理论教学的难度和分量,提高课堂教学效益(教学手段)。
5:在课后习题的安排上适当让学生通过模仿例题的思想方法,加深学生解应用题的能力,这主要由于学生刚刚入门,多进行模仿,习惯以后,再做与例题不一样的习题,可以提高运用知识能力,同时让学生进行一题多解,找出共同点,区别或最佳列法,以开阔学生的思路。
四:教学程序:
(一):课堂结构:复习提问,导入讲授新课,课堂练习,巩固新课,布置作业五个部分。
(二):教学简要过程:
1:复习提问:
(1):什么叫做等式?
(2):等式与方程之间有哪些关系?
(3):求_的15%的代数式。
(4):叙述代数式与方程的区别。
(理由是:通过复习加深学生对等式,方程,代数式之间关系的理解,有利于学生熟练正确根据题意列出一元一次方程,从而有利降低本节的难度。)。
2:导入讲授新课:
(1):教具:
一块小黑板,抄212例1题目及相对应的空表格。
左边右边。
(2):新课引述:
(3):讲述课文212例1:
(目的是:要求学生认真读懂题目,寻找反映题目的全部含义的相等关系,必须根据题目关系,切勿盲目性)通过理解启发学生寻找出以下关系:原来重量—运出重量=剩余重量(a)(在指导学生分析寻找题意相等关系时,可能存在学生分析问题思路不同,会找出如下关系:原来重量=运出重量+剩余重量,原来重量—剩余重量=运出重量的相等关系来,这主要由于学生思路不同,得出的关系表面不同,但思路是正确的,应加以鼓励培养学生这种发散思维能力。)。
指导学生设原来重量为_千克。这里分析等式左边:原来重量为_千克,运出重量为15%_千克,把以上填入表格左边。字串7分析等式右边:剩余重量为42500千克,填入表格右边。
(目的是:通过分析使学生易看出,先弄懂题意,找出相等关系,再按照相等关系来设未知数和列代数式,有利于降低列方程解应用题的难度)。
把以上左边和右边的代数式分别代入(a)中,同时要求学生注意方程的左边和右边的单位要一致,就可以列出方程。
同时要求学生在解答过程中勿漏写“答”和“设”,且都不要漏写单位。
结合解题过程向学生介绍一元一次应用题解法的一般步骤:
课本215黑体字。
3:课堂练习:
课文216练习1,2题。
(目的是:让学生通过适当的模仿例题的解题思想方法从而加深对本课的内容的理解掌握。)。
4:新课巩固:
学生对本节内容进行要小结:
列方程解应用题着重于分析,抓住寻找相等关系。解一元一次应用题的一般步骤及注意事项。
(目的:让学生加深对应用题的解法的认识和该注意事项的重视。)。
5:作业布置:
课文221习题4-4(1)a组1,2,3题。
(目的:在于检验学生对本节内容的理解和运用程度,以及实际接受情况,并促使学生进一步巩固和掌握所学的内容。)。
五:板书设计:
4_4一元一次方程的应用:
例题:小黑板出示例1题目解:设原来有_千克面粉,那么运。
相等关系:原来重量—运出重量=剩余重量出了15%_千克,依题意,得。
等式左边:等式右边:_—15%_=42500。
原来重量为_千克,剩余重量为42500千克。解这个方程:
运出重量为15%_千克。85/100__=42500。
解一元一次方程的一般步骤:_=50000(千克)。
小黑板出示课文215黑体字内容提要答:原来有50000千克面粉。
人教七年级数学教案全册篇十四
1.经历观察、分析、操作、欣赏以及抽象,归纳等过程,经历探索图形平移性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。
2.通过实例认识平移,理解平移的含义,理解平移前后两个图形对应点连线平行且相等的性质.
重点、难点。
重点:探索并理解平移的性质.
难点:对平移的认识和性质的探索.
教学过程。
一、引入新课。
1.教师打开幻灯机,投放课本图5.4-1的图案.
2.学生观察这些图案、思考并回答问题.
(1)它们有什么共同的特点?
(2)能否根据其中的一部分绘制出整个图案?
3.师生交流.
(1)这引进美丽的图案是由若干个相同的图案组合而成的,图5.4-1上一排左边的图案(不考虑颜色)都有“基本图形”;中间一个正方形,上、下有正立与倒立的正三角形,如图(1);上排中间的图案(不考虑颜色)都有“基本图形”:正十二边形,四周对称着4个等边三角形,如图(2);上排右边的图案(不考虑颜色)都有“基本图形”;正六边形,内接六角星,如图(3);下排的左图中的“基本图形”是鸽子与橄榄枝;下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.
人教七年级数学教案全册篇十五
2.会求一个已知数的相反数;。
3.体验数形结合思想;。
4.根据相反数的意义化简符号.
二、知识回顾1.数轴的三要素是什么?在下面画出一条数轴:
原点、正方向和单位长度.
2.在上面的数轴上描出表示5、—2、—5、+2这四个数的点.
3.观察上图并填空:数轴上与原点的距离是2的点有2个,这些点表示的数是2、-2;与原点的距离是5的点有2个,这些点表示的数是5、-5.
三、新知讲解1.相反数的几何意义。
数轴上表示互为相反数的两个数的点关于原点对称.
2.相反数的概念。
像2和—2、5和—5、3和—3这样,只有符号不同的两个数叫做互为相反数.把其中一个数叫做另一个数的相反数.特别地,0的相反数是0.
四、典例探究。
1.相反数的几何意义(相反数的引入)。
【例1】如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是,它们分别在原点的左边和右边,我们说,这两点关于.
a和互为相反数,也就是说,-a是的相反数.
总结:互为相反数的两个数分别位于原点的两侧,且到原点的距离相等,我们也说数轴上表示互为相反数的两个数的点关于原点对称.
练1数轴上表示相反数的两个点和原点的距离.
2.相反数的概念辨析。
【例2】判断下列说法正误.
(1)-5是相反数.()。
(2)-5是5的相反数,5不是-5的相反数.()。
(3)符号相反的两个数叫做互为相反数.()。
总结:理解相反数的定义,要注意以下几点:
2.是相反数的两个数之间的关系是相互的,如的相反数是,反之的相反数是;。
3.“只有”指的是仅仅是符号不同,而数字(绝对值)是相同的,如-3和5不是相反数,因为它们的数字不同.
练2辨析:因为向东6米和向西3米是一对相反意义的量,如果规定向东是正方向,向东6米可以记作+6米,向西3米可以记作-3米,所以+6和-3互为相反数.()。
3.求一个数的相反数。
人教七年级数学教案全册篇十六
3、在教学中适当渗透分类讨论思想。
重点:有理数的加法法则。
重点:异号两数相加的法则。
教学过程:
二、讲授新课。
1、同号两数相加的法则。
学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)。
教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?
学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(-5)+(-3)=-8(m)。
师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加的法则。
学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(-3)=2(m)。
师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两个数相加得零。
教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?
学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。
师生共同归纳出:互为相反数的两个数相加得零。
教师:你能用加法法则来解释这个法则吗?
学生回答:可用异号两数相加的法则来解释。
一般地,还有一个数同0相加,仍得这个数。
三、巩固知识。
课本p18例1,例2、课本p118练习1、2题。
四、总结。
运算的关键:先分类,再按法则运算;。
运算的步骤:先确定符号,再计算绝对值。
注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。
五、布置作业。
课本p24习题1.3第1、7题。
人教七年级数学教案全册篇十七
概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.
(二)内容解析。
现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.
基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.
二、目标和目标解析。
(一)教学目标。
1.理解不等式的概念。
2.理解不等式的解与解集的意义,理解它们的区别与联系。
3.了解解不等式的概念。
4.用数轴来表示简单不等式的解集。
(二)目标解析。
1.达成目标1的标志是:能正确区别不等式、等式以及代数式.
2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.
3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.
4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.
三、教学问题诊断分析。
本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.
因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.
四、教学支持条件分析。
利用多媒体直观演示课前引入问题,激发学生的学习兴趣.
五、教学过程设计。
(一)动画演示情景激趣。
设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.
(二)立足实际引出新知。
小组讨论,合作交流,然后小组反馈交流结果.
最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)。
人教七年级数学教案全册篇十八
1.通过与温度计的类比,了解数轴的概念,会画数轴。
2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。
过程方法。
1.从直观认识到理性认识,从而建立数轴概念。
2.通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。
3.会利用数轴解决有关问题。
情感态度。
通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性。
【教学重点】。
1.数轴的概念。
2.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。
【教学难点】。
从直观认识到理性认识,从而建立数轴的概念。
【情景引入】。
1.小明感冒了,医生用体温计测量了他的体温,并说:“37.8度。”
提疑:医生为什么通过体温计就可以读出任意一个人的体温?
(体温计上的刻度)。
2.我们再一起去看看12月时祖国各地的自然风光和温度情况(电脑分别显示黑龙江、焦作、海南三个城市美丽的自然风光,温度分别为-10°c,0°c,20°c)。
提疑:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?
(正数、零、负数)。
3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解。然后提问:请找出一支温度计从外观上具有哪些不可缺少的特征?(组织学生讨论交流)学生可能会从不同的角度回答,教师给予必要的引导,总结出与数轴相对应的特点,如形状是直的、0刻度、单位刻度。(电脑动态演示,将温度计水平放置,抽象得出数轴图形表示有理数-10,0,20的过程)从而引出课题------数轴。