查字典范文网 >> 公安大数据心得体会(实用13篇)

公安大数据心得体会(实用13篇)

小编:紫衣梦

心得体会是对所经历的事物的理解和领悟的一种表达方式,是对自身成长和发展的一种反思和总结。我们想要好好写一篇心得体会,可是却无从下手吗?下面小编给大家带来关于学习心得体会范文,希望会对大家的工作与学习有所帮助。

公安大数据心得体会篇一

随着信息技术的快速发展,大数据已经成为了当代社会最为炙手可热的话题之一。作为信息时代的产物,大数据给我们的生活带来了巨大的改变。最近,我读了一本名为《大数据》的书,在阅读过程中,让我对大数据有了更深的认识。下面我将与大家分享一下我的体会。

首先,大数据让我们的生活更加便利。现如今,大数据技术得到了广泛的应用,人们可以通过各种技术手段轻松地获取所需的信息。无论是购物、出行还是旅游,我们都能够通过大数据获取到最新的产品信息、路线规划以及景点推荐,从而为我们的生活提供了诸多便利。比如,每当我需要购买产品时,只需在电子商务平台上输入关键词,便可获得大量的搜索结果,同时还能通过查看其他用户的评价来进行筛选,这使得我们能够更加轻松地做出购买决策。

其次,大数据为商业发展提供了新的机遇。随着大数据技术的不断改进,越来越多的企业开始使用大数据分析手段来处理海量的数据,从而找到市场的空白点,为企业创造更多商机。例如,通过对大数据的分析,电商平台能够通过用户的购买行为了解用户的兴趣爱好,并根据这些数据进行精确的产品定位和个性化推荐,从而提高销售额。大数据的出现,使得商业发展更加精准和高效,企业可以更加了解消费者的需求,提供更好的产品和服务。

再次,大数据为决策提供了科学依据。无论是政府还是企事业单位,在制订政策和规划发展战略时,都需要基于大量的数据进行决策。大数据的出现让决策者可以更加客观地了解社会经济现状,分析各种数据之间的关系以及相关因素对决策结果的影响,从而做出更加明智的决策。比如,在交通规划方面,利用大数据可以实时监测交通拥堵情况,分析交通流量以及不同道路之间的关系,从而优化交通路线,提高交通效率。大数据的运用,为决策者提供了更准确的信息,帮助他们做出科学合理的决策。

最后,大数据也带来了一系列的挑战和问题。首先,数据安全问题成为了一个亟待解决的难题。大数据的存储和传输需要庞大的计算资源,但与此同时,也给数据安全带来了巨大的挑战。随着黑客技术的不断发展,数据泄露和隐私侵犯的风险也在逐渐增加。其次,大数据的过滤和分析需要高度专业的技术和人才。大量的数据对于普通人来说是一种负担和困扰,如果没有足够的专业人才来进行数据的处理和分析,那将影响到大数据的应用和发展。

总而言之,大数据给我们的生活和社会带来了诸多的变化和好处,但也面临着一些挑战和问题。我认为,我们应该在充分利用大数据的优势的同时,加强数据安全的保护和专业人才的培养。只有这样,我们才能更好地应对大数据时代的挑战和机遇,并为我们的生活和社会发展创造更加美好的未来。

公安大数据心得体会篇二

这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。

《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。

下面来重点介绍《大数据时代》这本书的主要内容。

《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20__年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。

接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。

之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。

无论如何,大数据时代将会到来,不管我们接受还是不接受!

我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。

我喜欢这本书是因为它给我展现了一个新的世界。

大数据心得体会篇2

公安大数据心得体会篇三

大数据时代的到来,对于刑事案件的侦查和办案工作带来了全新的挑战和机遇。大数据办案成为了刑事司法领域一个热门的话题。大数据办案是指通过对海量的数据进行分析和挖掘,从中获取有价值的信息,以便更好地指导侦查,判断案情,并加强证据的确凿性。下面我将以我近期参与的一起刑事案件的办理过程为例,阐述一下对大数据办案的一些心得体会。

首先,大数据办案给侦破工作带来了极大的便利。根据以往的工作经验,我们通常要花费大量的精力和时间,人工搜集和整理案件相关的证据和线索,然后进行分析推理和研判。而有了大数据技术的应用,我们可以通过计算机系统自动地从庞大的数据中筛选出有用的信息,大大提高了工作效率。比如,在我参与的这起案件中,我们利用大数据技术快速获取了犯罪嫌疑人的通讯记录、社交媒体信息、银行交易记录等,从中分析出了嫌疑人的行为轨迹和联系人关系,并将其作为关键证据在法庭上使用。

其次,大数据办案能够帮助我们发现隐藏在海量数据中的线索。在传统的侦查工作中,我们通常会遇到一些困难:比如,嫌疑人使用多个身份证、多个手机号等多变的方式进行犯罪活动,虚构虚假身份等。而借助大数据技术,我们可以将这些看似无关的数据进行关联分析,通过挖掘数据特征和模式来发现潜在的线索。在我们的案件中,嫌疑人多次变换手机号码,并使用不同的信用卡进行交易,但通过大数据分析,我们发现了这些数据之间的关联和模式,成功地锁定了嫌疑人的真实身份,为案件的侦破提供了重要线索。

再次,大数据办案能够提供更可靠的证据和判断依据。传统的侦破工作往往依赖于警察的经验和直觉来推断事实和判断嫌疑人的行为动机,容易带有主观性和片面性。而大数据分析可以从客观的角度出发,通过大量的数据和算法进行处理,得出更为客观、准确的结论。在我们的案件中,通过对涉案人员的通话和短信记录进行分析,我们得到了一份详细的时间线,可以清楚地看到嫌疑人的活动轨迹和与案件有关的关键节点,这为案件的侦破和法庭审理提供了坚实的证据和依据。

最后,大数据办案的推广应用需要保护隐私和遵循法律法规。尽管大数据办案在提高效率和便捷性方面具有巨大的潜力,但也伴随着一些隐私和安全问题。对于隐私数据的采集、存储和使用都需要进行严格的规范和限制,以保护公民的合法权益。同时,大数据办案也必须遵循法律法规的约束,确保其合规性和合法性。在我们的案件中,我们严格按照法律程序和规定,依法开展取证和调查工作,确保了证据的合法性和可靠性。

总之,大数据办案作为一种新的侦查和研判手段,在刑事领域具有广阔的应用前景和重要的意义。通过大数据技术的应用,我们可以更快地获取案件相关的证据和线索,发现隐藏其中的关联和模式,提供更可靠的证据和判断依据。然而,大数据办案也需要保护隐私和遵循法律法规的要求,确保其合规性和合法性。只有在合理、规范的基础上使用大数据技术,才能更好地发挥其在刑事办案中的作用,维护社会的公平正义。

公安大数据心得体会篇四

随着科技的飞速发展和信息化时代的到来,大数据已经成为企业创新和发展的重要支撑,使得企业能够摆脱传统的经验和直觉,通过数据的分析和挖掘来指导决策。在我个人的实践过程中,我深有体会地发现,大数据创新是一个灵活的过程,需要经验丰富的团队、科学的方法和良好的数据基础。下面将从这三个方面详细阐述我在大数据创新中的心得体会。

首先,经验丰富的团队是大数据创新的核心。从数据的收集、清洗、处理到模型的构建、算法的运用,都需要团队中的每个成员发挥专业知识和技能。在我所参与的大数据创新项目中,我们的团队由数据分析师、数据科学家、工程师和业务专家组成。数据分析师能够深入了解数据的特点和业务需求,进行有效的数据分析和挖掘;数据科学家能够运用统计学和机器学习的方法构建预测模型,提供有针对性的建议;工程师能够将模型转化为实际应用,实现数据的可视化和自动化;业务专家则更贴近实际运营,能够将大数据创新与业务策略有效结合。团队成员之间的密切合作和相互补充,使得大数据创新能够得以顺利推进和落地。

其次,科学的方法是大数据创新的基石。大数据创新不仅仅是凭直觉和经验作出决策,而是通过科学的方法来进行数据的分析和模型的构建。在大数据的处理过程中,我们需要遵循一整套科学的流程,包括问题定义、数据收集、数据清洗、数据分析和模型应用。首先,我们要明确问题的背景和目标,确立大数据分析的目的和范围;然后,通过各种途径多角度地收集数据,包括传感器、互联网、应用程序等,从而形成全面的数据集;接下来,对数据进行清洗和预处理,去除噪声和异常值,使得数据更具可比性和可信度;然后,我们可以运用统计学、机器学习和人工智能等方法,对数据进行分析和建模;最后,将模型转化为实际应用,为企业的决策提供支持。通过科学的方法,我们可以准确地分析问题,发现潜在的商机和风险因素,为企业提供有效的决策依据。

最后,良好的数据基础是大数据创新的保障。大数据的质量和数量直接影响到分析和建模的准确性和可行性。在大数据创新中,我们需要关注数据的来源和真实性,确保数据的质量。同时,我们还需要拥有大量的数据量,以便进行足够的样本量和样本空间的分析,避免过拟合和欠拟合的问题。在我参与的项目中,我们经常需要从各种信源中收集大量的数据,包括用户日志、传感器数据、市场调研数据等。只有拥有这些数据的基础,才能实现对用户行为、市场趋势等的深入分析和挖掘,为企业的创新和发展提供支持。

综上所述,大数据创新是一个灵活的过程,需要经验丰富的团队、科学的方法和良好的数据基础。在实践过程中,我们需要注重团队的合作和沟通,以及科学的分析和建模方法,才能实现数据的有效利用和创新。未来,随着大数据技术的不断发展和应用场景的扩大,大数据创新将会在企业发展中发挥越来越重要的作用。我们需要不断学习和总结经验,不断追求创新和突破,为企业带来更大的发展机遇。

公安大数据心得体会篇五

读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。

“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。

近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。

当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!

《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。

可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。

其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。

还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。

所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。

大数据的心得体会篇4

公安大数据心得体会篇六

这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。

《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。

下面来重点介绍《大数据时代》这本书的主要内容。

《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。

接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。

之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。

无论如何,大数据时代将会到来,不管我们接受还是不接受!

我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。

我喜欢这本书是因为它给我展现了一个新的世界。

公安大数据心得体会篇七

在数字经济时代,大数据智能已经成为了人们日常生活、商务活动等各个领域的重要组成部分。作为一名从事数据分析工作的从业者,我对大数据智能有着深刻的理解和领悟。在工作和学习中,我常常与大量的数据打交道,通过不断的实践和探索,逐渐积累了丰富的心得体会。在此,我想和大家分享一下我的一些感悟和思考。

第二段:了解数据

在大数据时代,我们需要明白一个道理,不是所有的数据都是有用的。因此,在开展数据分析工作之前,我们需要对所收集的数据进行归类、筛选,只有将有用的数据提取出来,才能进行有效的分析,才能为企业决策带来有效的参考和指导。我们需要了解数据的特点,掌握各种数据处理技巧,并且善于从中发现有价值的信息。精准、高效地了解数据可以为企业带来更深入、更具实际意义的启示。

第三段:掌握数据分析方法

数据分析是大数据时代的关键词,因为只有通过数据分析,才能有效地展现出数据背后的价值信息。常用的数据分析方法包括可视化分析、数据挖掘以及机器学习等,选择不同场景下的合适方法,将极大地提高数据分析的效率和准确性。此外,数据分析不仅仅是技术上的问题,还包括了对数据的理解和对业务的深入把握。我们需要从业务的角度出发,将数据分析与业务需求结合起来,才能为企业提供最有价值的数据分析服务。

第四段:注重数据安全和隐私保护

数据是企业重要的资产,保护数据安全是大数据智能的重要组成部分。在进行数据分析的过程中,我们必须时刻注重保护数据的安全和隐私,防止数据泄露和非法使用。因此,在数据分析过程中,我们需要依据国家法规及标准,建立安全、合规的数据保护机制,同时也要充分考虑隐私保护和数据的个人权益问题,有效处理好好用、合法用、安全用、可追溯用的关系。

第五段:结语

总之,在大数据时代,大数据智能已经成为企业决策的重要基石。对于从事数据分析工作的人员来说,我们需要具备对数据的敏锐感知,掌握先进的分析技术和方法,同时注重数据安全和隐私保护。只有在这些基础上,我们才能将数据分析的价值最大化,帮助企业做出更加明智的决策。大数据时代,数据不仅仅是一个简单的数字,更是具有无限可能的头脑风暴。我们有理由相信,未来的世界,将会因大数据智能而变得更加智慧、美好。

公安大数据心得体会篇八

近年来,随着技术的进步和互联网的发展,大数据已经成为了我们生活中不可或缺的一部分。大数据的应用已经渗透到了各行各业,给我们的生活带来了巨大的变化。在与大数据打交道的过程中,我深深地感受到了大数据带来的“信息之海”给我们带来的便利和挑战。在这个过程中,我逐渐形成了自己的大数据基础心得体会。

首先,了解数据的重要性。数据是大数据的基础,对于每一项工作来说都起到至关重要的作用。在与大数据的日常工作中,我深刻认识到了数据对于决策的重要性。通过对数据的分析和挖掘,可以为决策者提供有力的支持,帮助他们做出正确的判断。因此,了解数据的重要性,懂得如何使用数据,对于我们在大数据中的工作起到了关键的作用。

其次,注重数据的质量和准确性。在与大数据打交道的过程中,我注意到了数据质量的重要性。数据的质量和准确性直接影响到数据的分析结果和决策的正确性。因此,我们在处理数据的过程中应该注重数据的质量和准确性,确保数据的完整性和准确性。只有数据质量和准确性达到一定的标准,我们才能够准确地进行数据分析和挖掘。

第三,善于使用数据分析工具。在大数据处理的过程中,数据分析工具是我们的得力助手。通过善于使用数据分析工具,我们可以更快速、准确地处理大数据,并发现数据背后的规律和趋势。因此,掌握和使用好数据分析工具是我们在大数据工作中需要具备的技能之一。通过不断的学习和实践,我渐渐熟练掌握了一些常见的数据分析工具,并能够灵活运用它们处理大数据。

第四,与团队合作,共同攻克难题。大数据处理往往需要多个人的共同努力才能完成,在与大数据的工作中,我深刻地认识到了团队合作的重要性。与优秀的团队一起工作,可以汇集更多的智慧和资源,加快问题解决的速度。通过与团队的合作,我们可以不断地探索问题的本质,找出最佳的解决方案。因此,我积极主动地与团队成员合作,共同攻克大数据处理中的各种难题。

最后,不断学习和提升自己的能力。大数据的发展日新月异,新的技术和方法层出不穷。在与大数据的工作中,我意识到了不断学习和提升自己的重要性。只有不断学习和适应新的技术和方法,我们才能够保持在大数据领域的竞争力。因此,我积极参加相关的培训和学习,提升自己的专业知识和技能,不断完善自己的能力。

总之,通过与大数据的日常工作,我深刻认识到了数据的重要性和质量的重要性。善于使用数据分析工具和与团队合作,共同攻克难题,也是在大数据工作中需要具备的能力。不断学习和提升自己的能力,也是在大数据工作中必不可少的一环。大数据给我们提供了更多的机会和挑战,通过不断总结经验和提升能力,我们才能更好地适应和应对这个不断发展的大数据时代。

公安大数据心得体会篇九

随着科技的发展和互联网的普及,大数据逐渐成为现代社会的一个重要议题。大数据不仅给人们的生活带来了极大的便利,也对各行各业的发展产生了深远的影响。在我与大数据的接触中,我深刻认识到大数据的重要性,并从中得到了许多心得体会。以下是我对大数据的理解和感悟。

首先,在大数据的背后隐藏着巨大的商机。随着大数据的崛起,越来越多的企业开始意识到大数据的商业潜力。通过分析海量的数据,企业可以深入了解市场需求、消费者习惯以及竞争对手的情况,从而有效地制定营销策略和业务发展方向。例如,在电商领域,通过大数据分析消费者的浏览行为和购买偏好,企业可以精准地推荐产品,提高销售转化率。在金融领域,通过分析大数据,可以发现潜在的风险和机会,有效预测市场走向。因此,我认为,掌握大数据分析能力将成为未来企业竞争的关键之一。

其次,大数据给个人提供了更多的机会和选择。在过去,人们的生活和工作范围受限于地理位置和资源的限制,很难积累一些特定领域的知识和经验。而如今,有了大数据,我们可以通过互联网获取大量的信息和资源,学习和探索任何我们感兴趣的领域。例如,通过在线教育平台,我们可以随时随地对自己感兴趣的知识进行学习,提升自己的能力。同时,对于创业者来说,大数据也提供了更多的商机。我们可以通过大数据分析发现市场的空白和需求,从而创办自己的公司或发展新的业务。因此,大数据为个人的发展提供了更多的机会和选择。

第三,大数据的应用推动了传统行业的转型与升级。随着大数据技术的成熟和应用的普及,越来越多的传统行业开始引入大数据分析和人工智能技术,以提高效率和降低成本。例如,制造业通过大数据分析生产过程中的数据,实现智能化生产和优化生产线布局,提高生产效率和产品质量。医疗行业通过分析大量的病历和医学数据,可以提前预测疾病风险,为患者提供更加精准的诊断和治疗方案。因此,大数据的应用推动了传统行业的升级和改造,提高了整体产业的竞争力。

第四,大数据也给我们的社会带来了一些隐忧和风险。尽管大数据带来了很多好处,但它也引发了一系列隐私和安全问题。在大数据时代,我们的个人信息和行为可以被收集、存储和分析,我们的隐私面临着更大的侵犯。另外,大数据分析中可能出现的偏见和错误也给我们的决策带来了风险。因此,我们需要建立相应的法律法规和技术手段,保护个人隐私,减少误导和错误的影响。

最后,我深刻认识到,大数据只是一个工具和手段,最关键的还是人。无论多么先进的大数据技术,最终的应用和决策还是需要人来负责和管理。因此,我们需要加强对大数据技术的学习和理解,提高自身的数据分析能力和逻辑思维能力,以更好地应对和利用大数据时代的机遇和挑战。

综上所述,大数据对我们的社会和生活产生了巨大的影响。它不仅给企业带来了商机,也给个人提供了更多的机会和选择。大数据的应用推动了传统行业的转型与升级,但也引发了一些隐忧和风险。因此,我们需要理性看待和利用大数据,加强对大数据技术的学习和规范,以更好地应对和引领大数据时代的变革。

公安大数据心得体会篇十

读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。

“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。

近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。

当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!

《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。

可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。

其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。

还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。

所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。

公安大数据心得体会篇十一

随着大数据时代的到来,大数据分析技术在各行各业都得以广泛应用。为了适应这个时代的需求,我产生了对大数据的浓厚兴趣,并决定投身于大数据学习之中。在大数据求学的过程中,我积累了丰富的知识和经验,并且获得了一些宝贵的心得体会。在此,我将分享我对大数据学习的理解和心得,希望能够对其他有兴趣于此领域的人有所帮助。

首先,我意识到大数据学习是一个全新的挑战和机遇。在学习过程中,我发现这个领域涉及的知识非常广泛,包括数据收集、处理、存储、分析等方方面面。考虑到大数据的规模和复杂性,我意识到单一的学科知识是不足以应对的。因此,我要不断地扩展自己的知识面,并且理解不同学科之间的联系和相互作用。通过不断地学习和实践,我发现大数据学习不仅需要应用数学、计算机科学等学科的知识,还需要具备良好的跨学科能力和创新思维。

其次,我学会了如何从大数据中发现有价值的信息。大数据时代,数据的规模和速度都呈爆炸式增长,但真正有价值的信息往往隐藏在大数据背后。在学习大数据分析的过程中,我学会了如何通过使用不同的数据分析工具和技术,从大数据中发现有意义的模式和规律。例如,通过数据挖掘技术,我可以从海量数据中找出隐藏的关联关系;通过机器学习算法,我可以构建预测模型,提供高精度的预测和决策支持。这些技术和工具不仅可以帮助企业发现新的商机,还可以为决策者提供科学依据,帮助其做出更准确的决策。

第三,在大数据学习的过程中,我认识到数据安全和隐私保护的重要性。大数据的快速发展和广泛应用给个人隐私带来了新的挑战。在大数据分析中,我们往往需要使用大量的个人数据来训练和验证模型。但如果这些数据不得体地被使用或泄露,将会对个人隐私造成严重的威胁。因此,我们必须始终牢记数据安全和隐私保护的原则,采取相应的技术和措施来保护个人数据的安全。同时,我们还要加强对数据使用的监管和规范,以确保数据在使用过程中得到合法和合理的处理。

第四,我发现学习大数据的过程是一个与他人合作和交流的过程。在大数据分析中,我们往往需要利用不同来源的数据、不同领域的知识和不同背景的专业人士进行合作。通过与他人的合作和交流,我们可以更好地理解和解决问题,同时也能够不断提高自己的能力和水平。因此,我们要具备良好的团队合作和沟通能力,能够与他人有效地合作、共同完成项目和达成目标。同时,我们还要学会倾听和尊重他人的意见和观点,尊重团队中每个成员的贡献,共同实现团队的目标。

最后,我深刻认识到学习大数据是一个持续不断的过程。在大数据领域,技术和知识的更新速度非常快,新的技术和工具不断涌现。因此,我们必须不断地学习和更新自己的知识和技能,跟上时代的步伐。除了不断地学习新的知识和技术,我们还需要关注行业的最新发展动态,了解市场的需求和趋势。只有不断学习和持续进步,才能在激烈的竞争中立于不败之地,并为未来的发展奠定良好的基础。

总之,大数据求学的过程是一次又一次的学习与挑战,我从中收获了很多宝贵的经验和体会。大数据学习需要我们不断地学习和实践,具备跨学科能力和创新思维,发现有价值的信息,关注数据安全和隐私保护,以及与他人合作和交流。在学习大数据的过程中,我们应该坚持学习的原则,不断提高自己的能力和水平,为未来的发展做好准备。只有如此,才能不断适应大数据时代的需求,为社会和企业提供更优质的数据分析服务。

公安大数据心得体会篇十二

如今,大数据时代成为炙手可热的话题。你知道读大数据时代心得体会是什么吗?接下来就是本站小编为大家整理的关于读大数据时代心得体会,供大家阅读!

在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。

数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。

这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。

《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。

下面来重点介绍《大数据时代》这本书的主要内容。

《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。

接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。

之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。

无论如何,大数据时代将会到来,不管我们接受还是不接受!

我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。

我喜欢这本书是因为它给我展现了一个新的世界。

读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。

“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。

近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。

当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!

《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。

可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。

其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。

还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。

所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。

公安大数据心得体会篇十三

读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。

本书从思维、商业、管理三个方面阐述了在大数据时代在下的变革,这些变革涉及到我们生活的方方面面,几乎其影响程度可以与两次工业革命相媲美。作者在第一部分提出了三个比较令人震惊的观点,也就是大数据的精髓在于我们分析信息时的三个转变,这三个转变将改变我们的理解和组建社会的方法。并且作者将生活,工作思维的大变革和这几个方面紧紧联系在一起。

第三个改变是不是因果关系而是相关关系,在大数据时代,我们更需要了解一个东西是什么,而不是为什么,要找到关联无,通过一个良好的关联物的相关关系可以帮助我们捕捉预测未来。

这三个方面是大数据时代所给我们带来的思维上的改变,所谓思路决定出路,思路有了创新,有了拓展,相应的社会也就会有很大的变化。紧接着第二部分作者从万事万物数据化和数据交叉复用的巨大价值两个方面,讲述驱动大数据战车在材质和智力方面向前滚动的最根本动力。第三部分则是阐述了大数据时代下的弊端以及在管理上的措施。个人认为本书的精髓部分是第一部分,第一部分的三个观点涉及的面很广,包括统计学、逻辑学、哲学等。后两个部分都是以第一部分这三个观点为基础展开阐述的。

这本书给我感触最深的.就是这三个转变,或者说是三个观点,可以说是哲学上说的世界观,因为世界观决定方法论,所以这三个观点对传统看法的颠覆,就会导致各种变革的发生。

首先是第一个,作者认为在抽样研究时期,由于研究条件的欠缺,只能以少量的数据获取最大的信息,而在大数据时代,我们可以获得海量的数据,抽样自然就失去它的意义了。放弃了随机分析法这种捷径,采用所有的数据。作者用大数据与乔布斯的癌症治疗例子说明了使用全部数据而非样本的意义,列举了日本“相扑”等来证明使用全体数据的重要性。

这个观点足以引起统计学乃至社会文明的变革,因为统计抽样和几何学定理、万有引力一样被看做文明得以建立牢固的基石。我对这个观点还是比较认同的,如果真能收集到整体的数据而且分析数据的工具也足够先进,自然是全体数据研究得出的结果更令人信服。但是这个观点也过于绝对,就算是在大数据时代要想收集到全体数据还是不太可能实现的,因为收集全体数据要付出的代价有时会很大。比如说,你要检测食品中致癌物质是否超标,你不可能每一件食品你都检测一遍吧。

第二,要效率不要绝对的精确。作者说,执迷于精确性是信息缺乏时代和模拟时代的产物,只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法被利用。作者是基于数据不可能百分之百正确的考虑而做出这样的判断的,如果采用小数据一个数据的错误就会导致结果的误差很大,但是如果数据足够多、数据足够杂那得出的结果就越靠近正确答案。大数据时代要求我们重新审视精确性的优劣,甚至还说到大数据不仅让我们不再期待精确性,也让我们无法实现精确性。谷歌翻译的成功很好地证明了这一点,谷歌的翻译系统不像candide那样精确地翻译每一句话,它谷歌翻译之所以优于ibm的candide系统并不是因为它拥有更好的算法机制,和微软的班科和布里尔一样,谷歌翻译增加了各种各样的数据,并且接受了有错误的数据。

而在阅读这本书时,发现这本书中争议最大的一个观点,不仅是读者,就算是本书的译者也在序言中明确地说到他不认同“相关关系比因果关系更重要”的观点。作者觉得相关关系对于预测一些事情已经足够了,不用花大力气去研究他们的因果关系。作者用林登的亚马逊推荐系统的成功,证实了大数据在分析相关性方面的优势以及在销售中获得的成功。沃尔玛也是充分利用并挖掘各类数据信息的代表,从啤酒和尿布的案例,以及作者举的有关蛋挞和飓风天气的案例,都说明了掌握了相关关系对于他们策略的帮助。

一句话,知道是什么就够了,不用知道为什么。很明显作者所举的例子都是属于商业领域的,但是对于其他领域来说这个观点就值得商榷了。比如说,在科学研究领域,你需要知其然也需要知道其所以然,找到事件发生的原理。用文中的一个例子说明,乔布斯测出整个基因图谱来治疗癌症,但是你治疗癌症你必须知道癌症发病的原理,知道哪一段基因导致了这种疾病,不可能只是说收集各种数据,然后利用其相关性来判断哪里出现了问题。

过度依赖所带来的后果。也用《少数派的报告》这部电影来说明如果痴迷于数据会导致我们将生活在一个没有独立选择和自由意志的社会,如果一切变为现实,我们将被禁锢在大数据的可能性之中。所以书中提出了几种解决方法,一种是使用数据时征询数据所有个人的知晓和授权。第二个技术途径就是匿名化。毫无疑问,大数据将会给社会管理带来巨大的变革。

在这个信息爆炸的时代,大数据给人类社会的方方面面带来了巨大的变革,这是社会发展的潮流,不可逆转,我们只有顺应这种潮流,把握住大数据时代变革的思想,才能在时代潮流中成为佼佼者,在思维上思路上略高一筹,才能在行动中占得先机!

上一篇:物业个人工作总结(优质10篇)

下一篇:奇迹小说