2023年高一数学函数的概念及其表示知识点模板
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
高一数学函数的概念及其表示知识点篇一
- 高中数学函数教学设计 推荐度:
- 初中数学知识点总结 推荐度:
- 高一历史必修一知识点总结 推荐度:
- 高二数学知识点总结 推荐度:
- 数学广角植树问题知识点总结 推荐度:
- 相关推荐
集合
集合具有某种特定性质的事物的总体。这里的事物可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(cantor,g.f.p.,1845年1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。
集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下定义。集合
集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。
元素与集合的关系
元素与集合的关系有属于与不属于两种。
集合与集合之间的关系
某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。『说明一下:如果集合a的所有元素同时都是集合b的元素,则a称作是b的子集,写作a?b。若a是b的子集,且a不等于b,则a称作是b的真子集,一般写作a?b。中学教材课本里将?符号下加了一个符号(如右图),不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。』
集合的几种运算法则
并集:以属于a或属于b的元素为元素的集合称为a与b的并(集),记作ab(或ba),读作a并b(或b并a),即ab={x|xa,或xb}交集:以属于a且属于b的元差集表示
素为元素的集合称为a与b的交(集),记作ab(或ba),读作a交b(或b交a),即ab={x|xa,且xb}例如,全集u={1,2,3,4,5}a={1,3,5}b={1,2,5}。那么因为a和b中都有1,5,所以ab={1,5}。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说ab={1,2,3,5}。图中的阴影部分就是ab。有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减集合
1再相乘。48个。对称差集:设a,b为集合,a与b的对称差集a?b定义为:a?b=(a-b)(b-a)例如:a={a,b,c},b={b,d},则a?b={a,c,d}对称差运算的'另一种定义是:a?b=(ab)-(ab)无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令n*是正整数的全体,且n_n={1,2,3,,n},如果存在一个正整数n,使得集合a与n_n一一对应,那么a叫做有限集合。差:以属于a而不属于b的元素为元素的集合称为a与b的差(集)。记作:ab={x│xa,x不属于b}。注:空集包含于任何集合,但不能说空集属于任何集合.补集:是从差集中引出的概念,指属于全集u不属于集合a的元素组成的集合称为集合a的补集,记作cua,即cua={x|xu,且x不属于a}空集也被认为是有限集合。例如,全集u={1,2,3,4,5}而a={1,2,5}那么全集有而a中没有的3,4就是cua,是a的补集。cua={3,4}。在信息技术当中,常常把cua写成~a。
集合元素的性质
1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如个子高的同学很小的数都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。2.独立性:集合中的元素的个数、集合本身的个数必须为自然数。3.互异性:集合中任意两个元素都是不同的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。4.无序性:{a,b,c}{c,b,a}是同一个集合。5.纯粹性:所谓集合的纯粹性,用个例子来表示。集合a={x|x2},集合a中所有的元素都要符合x2,这就是集合纯粹性。6.完备性:仍用上面的例子,所有符合x2的数都在集合a中,这就是集合完备性。完备性与纯粹性是遥相呼应的。
集合有以下性质
若a包含于b,则ab=a,ab=b
集合的表示方法
集合常用大写拉丁字母来表示,如:a,b,c而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c拉丁字母只是相当于集合的名字,没有任何实际的意义。将拉丁字母赋给集合的方法是用一个等式来表示的,例如:a={}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。
常用的有列举法和描述法。1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|p}(x为该集合的元素的一般形式,p为这个集合的元素的共同属性)如:小于的正实数组成的集合表示为:{x|0
4.自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作n;不包括0的自然数集合,记作n*(2)非负整数集内排除0的集,也称正整数集,记作z+;负整数集内也排除0的集,称负整数集,记作z-(3)全体整数的集合通常称作整数集,记作z(4)全体有理数的集合通常简称有理数集,记作q。q={p/q|pz,qn,且p,q互质}(正负有理数集合分别记作q+q-)(5)全体实数的集合通常简称实数集,记作r(正实数集合记作r+;负实数记作r-)(6)复数集合计作c集合的运算:集合交换律ab=bb=ba集合结合律(ac=ac)(ac=ac)集合分配律ac)=(a(ac)ac)=(a(ac)集合德.摩根律集合
cu(ab)=cuacubcu(ab)=cuacub集合容斥原理在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合a的元素个数记为card(a)。例如a={a,b,c},则card(a)=3card(ab)=card(a)+card(b)-card(ab)card(ac)=card(a)+card(b)+card(c)-card(ab)-card(bc)-card(ca)+card(ac)1885年德国数学家,集合论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用方式。集合吸收律ab)=aab)=a集合求补律acua=uacua=设a为集合,把a的全部子集构成的集合叫做a的幂集德摩根律a-(buc)=(a-b)(a-c)a-(bc)=(a-b)u(a-c)~(buc)=~b~c~(bc)=~bu~c~=e~e=特殊集合的表示复数集c实数集r正实数集r+负实数集r-整数集z正整数集z+负整数集z-有理数集q正有理数集q+负有理数集q-不含0的有理数集q*
s("content_relate");【高一数学与函数概念知识点】相关文章:
数学集合与函数概念高一知识点02-23高一数学集合与函数概念知识点01-20高一数学函数的有关概念知识点02-24数学知识点:函数的概念02-26高一函数概念知识点归纳01-21高一数学必修一函数概念的知识点01-26高一数学知识点集合与函数概念02-23集合与函数概念高一数学知识点03-08关于高一数学知识点:集合与函数概念02-23
- 唐诗三百首
- 古诗三百首
- 宋词精选
- 元曲精选
- 古诗十九首
- 小学古诗
- 小学生必背古诗80首
- 小学生必背古诗70首
- 写景的古诗
- 咏物诗
- 描写春天的古诗
- 描写夏天的古诗
- 描写秋天的古诗
- 描写冬天的古诗
- 描写雨的古诗
- 描写雪的古诗
- 描写风的古诗
- 描写花的古诗
- 描写梅花的古诗
- 描写荷花的古诗
- 描写柳树的古诗
- 描写月亮的古诗
- 描写山的古诗
- 描写水的古诗
- 描写长江的古诗
- 描写黄河的古诗
- 描写儿童的古诗
- 山水诗
- 田园诗
- 边塞诗
- 含有地名的古诗
- 节日古诗
- 春节古诗
- 元宵节古诗
- 清明节古诗
- 端午节古诗
- 七夕古诗
- 中秋节古诗
- 重阳节古诗
- 古代抒情诗
- 伤怀的古诗
- 咏史怀古诗
- 爱国古诗
- 送别诗
- 离别诗
- 思乡诗
- 思念的诗
- 爱情古诗
- 励志古诗
- 哲理诗
- 闺怨诗
- 赞美老师的古诗
- 赞美母亲的古诗
- 关于友情的古诗
- 关于战争的古诗
- 忧国忧民的古诗
- 婉约诗词
- 豪放诗词
- 人生必背古诗
- 论语
- 诗经
- 孙子兵法
- 三十六计
- 史记
- 周易
- 山海经
- 资治通鉴
- 黄帝内经
- 了凡四训
- 梦溪笔谈
- 千字文
- 世说新语
- 左传
- 大学
- 中庸
- 尚书
- 礼记
- 周礼
- 仪礼
- 庄子
- 鬼谷子
- 老子
- 孟子
- 墨子
- 荀子
- 韩非子
- 列子
- 淮南子
- 管子
- 尉缭子
- 吴子
- 伤寒论
- 天工开物
- 素书
- 汉书
- 文心雕龙
- 吕氏春秋
- 孝经
- 孔子家语
- 颜氏家训
- 孙膑兵法
- 搜神记
- 笑林广记
- 楚辞
- 乐府诗集
- 论衡
- 百战奇略
- 战国策
- 三国志注
- 将苑
- 六韬三略
- 反经
- 公孙龙子
- 司马法
- 逸周书
- 黄帝四经
- 清官贪官传
- 睡虎地秦墓竹简
- 贞观政要
- 金刚经
- 佛说四十二章经
- 水经注
- 农桑辑要
- 文昌孝经
- 六祖坛经
- 地藏经
- 徐霞客游记
- 弟子规
- 增广贤文
- 幼学琼林
- 冰鉴
- 容斋随笔
- 智囊
- 围炉夜话
- 商君书
- 魏书
- 周书
- 三字经
- 子夏易传
- 笠翁对韵
- 公羊传
- 尔雅
- 三国志
- 后汉书
- 明史
- 晋书
- 宋史
- 新唐书
- 旧唐书
- 隋书
- 元史
- 宋书
- 北齐书
- 新五代史
- 陈书
- 金史
- 南齐书
- 梁书
- 旧五代史
- 辽史
- 北史
- 南史
- 续资治通鉴
- 明季北略
- 浮生六记
- 高士传
- 大唐西域记
- 传习录
- 小窗幽记
- 国语
- 说苑
- 本草纲目
- 神农本草经
- 难经
- 千金方
- 奇经八脉考
- 濒湖脉学
- 棋经十三篇
- 古画品录
- 茶经
- 百家姓
- 智囊(选录)
- 罗织经
- 朱子家训
- 陶庵梦忆
- 红楼梦
- 三国演义
- 聊斋志异
- 西游记
- 水浒传
- 儒林外史
- 封神演义
- 太平广记
- 警世通言
- 镜花缘
- 醒世恒言
- 剪灯新话
- 隋唐演义
- 初刻拍案惊奇
- 老残游记
- 博物志
- 孽海花
- 三侠五义
- 穆天子传
- 二刻拍案惊奇
- 喻世明言
- 说唐全传
- 老残游记续集
- 三刻拍案惊奇
- 四十二章经
- 心经
- 法华经
- 华严经
- 楞伽经
- 无量寿经
- 圆觉经
- 易传
- 抱朴子
- 阴符经
- 黄庭经
- 文子
- 太玄经
- 悟真篇
- 声律启蒙
- 随园诗话
上一篇:2023年现在的原始资金通用